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Beyond blobs in percolation cluster structure: The distribution of 3-blocks
at the percolation threshold
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~Received 8 February 2002; published 20 May 2002!

The incipient infinite cluster appearing at the bond percolation threshold can be decomposed into singly
connected ‘‘links’’ and multiply connected ‘‘blobs.’’ Here we decompose blobs into objects known in graph
theory as 3-blocks. A 3-block is a graph that cannot be separated into disconnected subgraphs by cutting the
graph at two or fewer vertices. Clusters, blobs, and 3-blocks are special cases ofk-blocks withk51, 2, and 3,
respectively. We study bond percolation clusters at the percolation threshold on two-dimensional~2D! square
lattices and three-dimensional cubic lattices and, using Monte Carlo simulations, determine the distribution of
the sizes of the 3-blocks into which the blobs are decomposed. We find that the 3-blocks have fractal dimension
d351.260.1 in 2D and 1.1560.1 in 3D. These fractal dimensions are significantly smaller than the fractal
dimensions of the blobs, making possible more efficient calculation of percolation properties. Additionally, the
closeness of the estimated values ford3 in 2D and 3D is consistent with the possibility thatd3 is dimension
independent. Generalizing the concept of the backbone, we introduce the concept of a ‘‘k-bone,’’ which is the
set of all points in a percolation system connected tok disjoint terminal points~or sets of disjoint terminal
points! by k disjoint paths. We argue that the fractal dimension of ak-bone is equal to the fractal dimension of
k-blocks, allowing us to discuss the relation between the fractal dimension ofk-blocks and recent work on path
crossing probabilities.

DOI: 10.1103/PhysRevE.65.056126 PACS number~s!: 64.60.Fr, 05.45.Df, 64.60.Ak
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I. INTRODUCTION

Percolation is the classic model for disordered syste
@1–3#. For concreteness we will study bond percolation s
tems in which bonds on a lattice are randomly occupied w
probability p. Clusters are defined as groups of sites a
bonds which are connected by occupied bonds. Clusters
be decomposed into objects known as blobs. Blobs are
of sites and bonds which cannot be decomposed into dis
nected sets by cutting only one bond. Equivalently blobs
sometimes described as being multiply connected—there
at least two disjoint paths between each point in a blob
every other point in the blob. The decomposition of the e
tire percolation cluster into blobs has been extensively s
ied @4#, as has been the distribution of sizes of blobs in
backbone@5#. For both cluster and backbone blobs, the fra
tal dimension of the blobs is the fractal dimension of t
backbone.

Here we address the questions of~i! whether there are
more fundamental objects into which blobs can be deco
posed, and~ii ! whether these objects then be further deco
posed. To answer these questions, we employ the langua
graph theory, in which sites are the vertices and bonds are
edges of a graph@6#.

One can definek-connected graphs~or k-blocks! as graphs
that cannot be separated into disconnected subgraphs by
ting the graph at fewer thank vertices@6,7#. Thus, clusters
are 1-blocks and blobs are 2-blocks. The natural next leve
decomposition of percolation systems is to decompose b
~2-blocks! into 3-blocks. By the definition above, 3-block
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are graphs that cannot be decomposed by cutting the gr
at fewer than three vertices. From a physicist’s point of vie
one can understand what 3-blocks are by considering a
as a resistor network with each bond being a resistor. Ass
one is trying to determine the resistance between two ve
ces of the network. One can simplify the network by usi
Kirchoff’s Laws to replace groups of sequential bonds a
groups of parallel bonds by single virtual bonds having
sistance equivalent to the bonds replaced. After this has b
done as completely as possible, what are left are 3-blo
We define the mass of a 3-block as the number of virt
bonds plus the number of nonreplaced original bonds
maining in the 3-block. Figures 1 and 2 provide examples
the decomposition of a blob into 3-blocks. It has been sho
@6# that the decomposition of 2-blocks into 3-blocks
unique.

Determining the scaling of the distribution of the 3-bloc
into which the 2-blocks can be decomposed is the subjec
this paper. In graph theory, the sites are typically not c
strained to a lattice structure, and one is only concerned w
the topology of the graphs; we will, however, work on squa
and cubic lattices.

II. NOTATION

Since we deal with a number of different types of frac
objects, we employ the following notation.

~i! The fractal dimension of an object of typeX will be
denoted asdX .

~ii ! The number distribution of objects of typeX in space
of type Y of sizeL will be denoted asn(NX ,LY).

~iii ! The exponent of the power-law regime of a distrib
tion of objects of typeX in space of typeY will be denoted as
tX,Y .
©2002 The American Physical Society26-1
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~iv! The amplitude of a distribution of objects of typeX in
space of typeY will be denoted asAX,Y .

~v! We definednY through the relation

^n~L !&;LdnY, ~1!

where^n(L)& is the average number of disjoint objects of
given type in spaceY.

~vi! The denote spaces of typeX or Y, we use 0,1,2,3 . . .
to denotek-blocks withk50,1,2,3 . . . corresponding to Eu-
clidean space, clusters, blobs, and 3-blocks, respectively
useB to denote the percolation cluster backbone.

~vii ! Additionally, because, as noted above, objects s
as 3-blocks can be nested, we denote quantities that rela
all levels of nesting with an asterisk. Specifically,tX,Y* and
AX,Y* denote the exponent of the power-law regime and
amplitude of a distribution of nested objects of typeX at all
levels of nesting in space of typeY. Similarly, dnY* is defined
through the relation

^n* ~L !&;LdnY* , ~2!

where^n* (L)& is the average number of nested objects at
levels of nesting of a given type in spaceY. Quantities not
qualified with an asterisk will denote quantities at a sin
level or quantities that cannot be nested.

Using this notation, previous results are@5#

n~N2 ,LB!5A2,BLdnBN2
2t2,Bf L2S N2

Ld2
D ~3!

FIG. 1. ~a! Decomposition of 2-blockG into subgraphsG1 , G2,
and G3. The rightmost graph representsG with the subgraphs re
placed by equivalent ‘‘virtual edges.’’~b! SubgraphG2 of G is
decomposed by identifying subgraphG21. The rightmost graph rep
resentsG2 with the subgraphG21 replaced by its equivalent edge
~c! SubgraphG3 of G is decomposed by identifying subgraphG31.
The rightmost graph representsG3 with the subgraphG31 replaced
by its equivalent edge. In~a!, ~b!, and~c! virtual edges are denote
by dashed lines. Note that while not shown in this figure, subgr
G31 could be further decomposed. The 3-blocks contained in
graphG areG21, having five edges, andG3 ~with the subgraphG31

replaced by its equivalent edge! having eight edges.
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for the number distribution of blobs of massN2 in the per-
colation cluster backbone and@4#

n~N2 ,L1!5A2,1L
dn1N2

2t2,1f L2S N2

Ld2
D ~4!

for the number distribution of blobs of massN2 in the whole
percolation cluster. The finite-size scaling functionf L2(x) in
Eqs.~3! and~4! approaches 0 whenx.1 and is 1 otherwise.

In analogy with Eqs.~3! and ~4! we expect the numbe
distribution of 3-blocks at all levels of nesting in a blob to b

n* ~N3 ,L2!5A3,2* Ldn2* N
3
2t3,2*

f cS N3

c D f L3S N3

Ld3
D , ~5!

wherec is the mass of the smallest 3-block and the finite-s
scaling function f c(x) approaches 0 whenx,1 and is 1
otherwise, reflecting the fact that there cannot be a
3-blocks smaller than the smallest sizec. In all dimensions
and for all lattices,c55. For simplicity we will approximate
n* (N3 ,LB) as

n* ~N3 ,L2!5H A3,2* Ldn2* N
3
2t3,2*

, c<N3<aLd2

0 otherwise.
~6!

III. SIMULATIONS

We perform simulations withp50.5, the exact percola
tion threshold for 2D@2,3# and p50.248 812 6, the mos
precise current estimate for the percolation threshold for
@8#. We created percolation clusters, which included the s
(0,L/2) and (L,L/2) for the 2D simulations and the site
(0,L/2,L/2) and (L,L/2,L/2) for the 3D simulations, decom
posed the backbones determined by these sites into blobs
then decomposed the blobs into 3-blocks. We study both

h
e

FIG. 2. Example of decomposition of backbone into 3-bloc
The thin lines represent the bonds in the backbone between p
$0,15% and $31,15% on a lattice withL532. The backbone is com
posed of a few single bond blobs connected to the terminal po
and a single large blob containing 950 bonds. The thick lines r
resent the virtual bonds of a single top-level 3-block into which
blob has been decomposed. This 3-block contains 216 vir
bonds. Some of the groups of bonds replaced by virtual bonds
themselves be decomposed into lower-level 3-blocks and so on
6-2
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BEYOND BLOBS IN PERCOLATION CLUSTER . . . PHYSICAL REVIEW E 65 056126
tributions of 3-blocks in blobs of given massN2, and distri-
butions of 3-blocks in backbones in systems of a given s
L. For purposes of analysis, we group together blobs w
mass 2m21,N2<2m.

We perform the decomposition into 3-blocks along t
lines of the procedure sketched in Ref.@6#. Basically, this
procedure is as follows: We first designate the blob that
are decomposing as the 2-block graphG. The natural next
level of decomposition is to identify connected subgrap
with two or more edges that are connected toG at only two
vertices. We denote these subgraphsG1 ,G2 ,G3 , . . . of G as
two-terminal objects. These two-terminal objects can then
replaced inG by ‘‘virtual edges,’’e1 ,e2 ,e3 , . . . . Note that
this process can be continued recursively. That is, the s
graph Gi may itself contain sub-graphs,Gi1 ,Gi2 ,Gi3 , . . .
that are connected toGi at only two vertices; we then replac
the subgraphsGi j in Gi by virtual edgeseGi j . The process
continues until the only remaining subgraphs are those
cannot be decomposed further by making cuts at two ve
ces; these, by definition, are 3-blocks. An example of t
decomposition is shown in Fig. 1. Other methods of deco
postion into 3-blocks are described in Refs.@9,10#.

We perform at least 3700 realizations for each syst
size; for the smaller system sizes for which the simulatio
run more quickly we performed as many as 108 realizations.
Because, the larger the systems the larger the numbe
3-blocks contained in the system, the statistics for the la
systems were acceptable despite the lower number of
izations. We bin the results for all system sizes in order
smooth the plots.

IV. TWO SPATIAL DIMENSIONS

In this section we discuss our results for 3-blocks in
percolation. Results in 3D are analogous and are discuss
the following section.

A. 3-blocks in blobs

Figure 3~a! plots the distributionsP* (N3uN2), the prob-
ability that a 3-block contained in a blob of sizeN2 contains
N3 bonds, for various values ofN2 . P(N3uN2) is the number
distributionn* (N3 ,N2) normalized to unity. Consistent with
Eqs. ~5! and ~6!, the plots exhibit power-law regimes fo
lowed by cutoffs due to the finite size of the blobs. T
‘‘bumps’’ in the distributions right before the cutoffs repre
sent 3-blocks that would have been larger but are trunc
due to the finite size of the blobs in which they are emb
ded. We estimate the slope of the power-law regimes,t3,2* , to
be 2.3560.05. Since

N3;Ld3 ~7!

and

N2;Ld2, ~8!

we expect

N3;N2
d3 /d2. ~9!
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In Fig. 3~b!, we show the collapsed plots in which w
scale the distributions byN2

d3 /d2 using the most precise pub
lished estimate ford2 , 1.643260.0008 @11#. ~A consistent
more recent estimate,d251.643160.0006, is given in Ref.
@12#.! Visually, we find the best collapse is obtained ford3
51.2060.1.

We can also estimated3 using Eq.~A5! from the Appen-
dix

d3~t3,2* 21!5dn2* 5d2 . ~10!

Using t3,2* 52.3560.05 andd251.643260.0008, results
in an estimate ofd351.2260.05.

B. 3-blocks in backbone

Figure 4~a! plots the distributionsP* (N3uLB), the prob-
ability that a 3-block contained in the backbone of a syst
of size L contains N3 bonds, for various values ofL.
P* (N3uLB) is the number distributionn* (N3 ,LB) normal-
ized to unity. Consistent with Eqs.~5! and ~6!, the plots
exhibit power-law regimes followed by cutoffs due to th
finite size of the systems. We estimate the slope of
power- law regimes,t3,B* , to be 2.2560.05. In Fig. 4~b!, we

FIG. 3. 2D ~a! distributions P* (N3uN2) of the number of
3-blocks of massN3 in a blob of sizeN2 versusN3 for ~from
bottom to top! N25210,212,214, and 216. The distributions exhibit a
power-law regime with slope22.3560.05 ~b! Distributions for
N25212,213,214,215, and 216 scaled with the value 1.20 for the
fractal dimensiond3 which gives the best collapse of the plots
~a!.
6-3
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show the collapsed plots in which we scale the distributio
by Ld3. Visually, we find the best collapse is obtained f
d351.1560.1.

Next we consider the distribution of ‘‘top-level’’ 3-block
in the backbone. Top-level 3-blocks are those not contai
within another 3-block. In Fig. 5~a!, we plot the distributions
P(N3uLB), the probability that a top-level 3-block containe
in the backbone of a system of sizeL containsN3 bonds, for
various values ofL. The plots exhibit power-law regime
followed by cutoffs due to the finite size of the systems. T
exponent of the power-law regimest3,B is estimated to be
1.660.05. In Fig. 5~b!, we show the collapsed plots, i
which we scale the distributions byLd3. The best collapse is
obtained ford351.1560.1, the same value as for the dist
butions of 3-blocks of all levels. Thus the fractal dimensio
of the top-level 3-blocks is the same as the fractal dimens
of 3-blocks of all levels but the slopes of the power-la
regimes are different; this is seen also in Fig. 6.

We can also use Eq.~A10!

d3~t3,B21!5dnB5
1

n
~11!

to obtain an estimate ofd3. SincednB is known exactly in
two dimensions and has been well studied in higher dim
sions and because one can usually determine the slopet3,B

FIG. 4. 2D ~a! distributions P* (N3uL) of the number of
3-blocks of massN3 in a backbone of sizeL versusN3 for ~from
bottom to top! L516, 32, 64, 128, 256, and 512. The distributio
exhibit a power-law regime with slope22.2560.05 ~b! Distribu-
tions scaled with the value 1.15 for the fractal dimensiond3 that
gives the best collapse of the plots in~a!.
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more accurately thand3 can be determined by finding th
best scaling collapse, we determined3 more accurately by
solving Eq.~11! for d3. Using our estimate fort3,B above we
find d351.2560.1. Combining this result with our earlie
estimates, we make the final estimate

d351.2060.1. ~12!

FIG. 5. 2D~a! distributionsP(N3uL) of the number of top level
3-blocks of massN3 in a backbone of sizeL versusN3 for ~from
top to bottom! L58, 16, 32, 64, and 128. The distributions exhib
a power-law regime with slope21.660.1. ~b! Distributions scaled
with the value 1.15 for the fractal dimensiond3 that gives the best
collapse of the plots in~a!.

FIG. 6. 2D distributionsP(N3uL) of top-level 3-blocks~filled
symbols! and P* (N3uL) of all-level 3-blocks~unfilled symbols!.
While the slopes of the power-law regimes of the two types
distributions are different, the finite-size-system cutoffs are ess
tially superimposed, consistent with the fractal dimension of
two types of distributions being equal.
6-4
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C. Why the fractal dimension of 3-blocks is smaller than the
fractal dimension of the backbone and 2-blocks

The fractal dimension of the 3-blocks is considerab
smaller than the fractal dimension,dB51.643260.0008
@11#, of 2-blocks ~blobs!. This is because virtual bond
~which are counted as one bond! replace many bonds in th
object which it replaces. This can be seen if we plot
distributionsP* (M3uLB), the probability that a 3-block con
tained in the backbone of a system of sizeL containsM3

bonds where we can count not the virtual bonds, but
bonds contained a 3-block. In Fig. 7~a! we plot P* (M3uLB)
for variousL. The best collapse for these plots@Fig. 7~b!#
corresponds to a fractal dimension of 1.660.1 consistent
with the fractal dimension of 2-blocks in 2D. This can b
understood as a reflection of the fact that in a system of
L, the mass of the largest 3-block~counting all bonds! can be
the same as the backbone mass. This is similar to the s
tion with blobs and backbones; the largest blob in a ba
bone can be as large as the whole backbone, which exp
why the fractal dimension of blobs is the same as the fra
dimension of the backbone.

Replacing a group of bonds by a virtual bond is analog
to removing dangling ends on a cluster when determining
backbone.

FIG. 7. 2D ~a! distributions P* (M3uL) of the number of
3-blocks of massM3 in a backbone of sizeL versusM3 for from
top to bottom! L516, 32, 64, 128, 256, and 512. InM3 we count
not virtual bonds but all bonds in the 3-block. The distributio
exhibit a power-law regime with slope21.860.1 ~b! Distributions
scaled with the value 1.6 for the fractal dimensiond3 that gives the
best collapse of the plots in~a!.
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V. THREE SPATIAL DIMENSIONS

Our analysis of the results of the 3D simulations proce
in a similar manner to the analysis for 2D.

A. 3-blocks in blobs

Figure 8~a! plots the distributionsP* (N3uN2), the prob-
ability that a 3-block contained in a blob of sizeN2 contains
N3 bonds, for various values ofN2. We estimate the slope o
the power-law regimes,t3,2* , to be 2.6360.05. In Fig. 8~b!,
we show the collapsed plots in which we scale the distri
tions byN2

d3 /d2 with d251.8760.03 @13#. Visually, we find
the best collapse is obtained ford351.1560.1.

Estimatingd3 using Eq.~A5! from the Appendix,

d3~t3,2* 21!5dn2* 5d2 , ~13!

with t3,2* 52.6360.05 andd251.8760.03, results in an es
timate ofd351.1560.05.

B. 3-blocks in backbone

Figure 9~a! plots the distributionsP* (N3uLB), the prob-
ability that a 3-block contained in the backbone of a syst
of size L containsN3 bonds, for various values ofL. We
estimate the slope of the power-law regimes,t3,B* , to be
2.5560.05. In Fig. 9~b!, we show the collapsed plots i

FIG. 8. 3D ~a! distributions P* (N3uN2) of the number of
3-blocks of massN3 in a blob of sizeN2 versusN3 for ~from
bottom to top! N25211,212, and 213. The distributions exhibit a
power-law regime with slope22.6360.05 ~b! Distributions for
N25211,212, and 213 scaled with the value 1.15 for the fractal d
mensiond3 that gives the best collapse of the plots in~a!.
6-5
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GERALD PAUL AND H. EUGENE STANLEY PHYSICAL REVIEW E65 056126
which we scale the distributions byLd3. Visually, we find the
best collapse is obtained ford351.1560.1.

Next we consider the distribution of the ‘‘top-level
3-blocks in the backbone. In Fig. 10~a!, we plot the distribu-
tions P(N3uLB), the probability that a top-level 3-block con
tained in the backbone of a system of sizeL containsN3
bonds, for various values ofL. The exponent of the power
law regimest3,B is estimated to be 2.060.05. In Fig. 10~b!,
we show the collapsed plots, in which we scale the distri
tions by Ld3. The best collapse is obtained ford351.15
60.1, the same value as for the distributions of 3-blocks
all levels. As in 2D, the fractal dimensions of the top lev
3-blocks is the same as the fractal dimension of 3-blocks
all levels but the slopes of the power-law regimes are diff
ent; this is seen also in Fig. 11.

Using Eq.~A10!

d3~t3,B21!5dnB5
1

n
. ~14!

To obtain an estimate ofd3 with our estimate fort3,B above
we find d351.1460.1. Combining this result with our ear
lier estimates, we make the final estimate

d351.1560.1. ~15!

FIG. 9. 3D ~a! distributions P* (N3uL) of the number of
3-blocks of massN3 in a backbone of sizeL versusN3 for ~from
top to bottom! L58, 16, 32, 64, and 128. The distributions exhib
a power-law regime with slope22.5560.1.~b! Distributions scaled
with the value 1.15 for the fractal dimensiond3 that gives the bes
collapse of the plots in~a!.
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The simulation results notwithstanding, it would be su
prising if d3 were smaller in 3D than in 2D because, belo
the critical dimensiondc56, both the fractal dimensions o
clusters and blobs increase with the Euclidean dimens
This suggests that while the actual values ofd3 may be
within the bounds we have estimated, the actual values
be consistent withd3 (2D)<d3 (3D).

FIG. 10. 3D ~a! distributionsP(N3uL) of the number of top-
level 3-blocks of massN3 in a backbone of sizeL versusN3 for
~from top to bottom! L532, 64, 128, 256, and 512. The distribu
tions exhibit a power-law regime with slope22.060.1. ~b! Distri-
butions scaled with the value 1.15 for the fractal dimensiond3 that
gives the best collapse of the plots in~a!.

FIG. 11. 3D distributionsP(N3uL) of top-level 3-blocks~filled
symbols! and P* (N3uL) of all-level 3-blocks~unfilled symbols!.
While the slopes of the power-law regimes of the two types
distributions are different, the finite-size-system cutoffs are ess
tially superimposed consistent, with the fractal dimension of
two types of distributions being equal.
6-6
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As in 2D, if we do not replace two-terminal objects in
3-block by a single virtual bond, the fractal dimension of t
3-block is that of a blob~see Fig. 12!.

Estimates for all of the 2D and 3D exponents are summ
rized in Table I.

VI. DECOMPOSITION OF THE WHOLE PERCOLATION
CLUSTER

While we have only decomposed 2-blocks that compr
the cluster backbone, we could proceed similarly for
2-blocks into which a cluster is decomposed. The fractal
mension of the 3-blocks into which a cluster is ultimate
decomposed should be the same as the fractal dimensio
the 3-blocks into which the backbone is ultimately deco
posed. The only difference we would expect in our resu
would be that the slope of the power-law regime of the d
tribution of the top-level 3-blocks would be given by

d3~t3,121!5dn15d, ~16!

the analogy of Eq.~A10!

VII. k-BONES AND PATH CROSSING PROBABILITIES

Just as blobs and backbones have the same fractal di
sion, we can identify objects analagous to backbones wh

FIG. 12. 3D ~a! distributions P* (M3uL) of the number of
3-blocks of massM3 in a backbone of sizeL versusM3 for ~from
top to bottom! L58, 16, 32, 64, and 128. InM3 we count not
virtual bonds but all bonds in the 3-block. The distributions exhi
a power-law regime with slope21.8760.1.~b! Distributions scaled
with the value 1.85 for the fractal dimensiond3 that gives the bes
collapse of the plots in~a!.
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have the same fractal dimensions ask-blocks. We define a
k-bone as the set of all points in a percolation system c
nected tok disjoint terminal points~or sets of disjoint termi-
nal points! by k disjoint paths. Thus the backbone is ak-bone
with k52. Just as the largestk-blocks into which a backbone
can be decomposed are 2-blocks, the largestk-blocks into
which ak-bone can be decomposed arek-blocks. The fractal
dimension of k-bones is the fractal dimension of th
k-blocks. One can see this easily by noting that if t
k-terminal points that define ak-bone are connected to eac
other, the resulting structure isk-block.

Recent work@14# has identified a relationship betwee
path crossing probabilities and the fractal dimensions of p
colation structures. Specifically, consider the probability,P̂k

P

that in an annular region the small inner circle of radiusr is
connected to the larger outer circle of radiusR, R@r , by k
disjoint paths. Then

P̂k
P;S r

RD x̂k

. ~17!

It has been observed@14# that x̂1 is the codimension of the
percolation cluster andx̂2 is the codimension of the back
bone. We extend these observations to the case of genek

d2 x̂k5dk , ~18!

whered is the spatial dimension of the system. This shou
hold in all dimensions where the annulus is now defined
two hyperspheres. It has been argued@12# that

xk, x̂k,x2k , ~19!

wherexk is the polychromatic path crossing exponent@14#
and which has been found rigorously in 2D to be@14#

xk5 1
12 ~k221!. ~20!

Using Eqs.~18!–~20!, we find in 2D

2 11
12 ,d3, 4

3 , ~21!

TABLE I. Measured fractal dimension, measured power-law
gime exponent, and calculated fractal dimension for 3-blocks in
and 3D. The calculated value ofd3 is determined by Eq.~10! for
3-blocks in a blob and Eq.~11! for 3-blocks in the backbone.

d3 t d3

Measured Measured Calculate
2D

All 3-blocks in blob 1.2060.1 2.3560.05 1.2260.05
All 3-blocks in backbone 1.1560.1 2.2560.05 —
Top-level 3-blocks in backbone 1.1560.1 1.6060.05 1.2560.1

3D

All 3-blocks in blob 1.1560.1 2.6360.05 1.1560.05
All 3-blocks in backbone 1.1560.1 2.5560.05 —
Top-level 3-blocks in backbone 1.1560.1 2.060.05 1.1460.1

t
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consistent with our estimate ford3 in 2D.
The relationship between the path crossing problem

k52 and the backbone dimension has been recently
ploited to determinedB very accurately using a transfer m
trix technique @12#. Possibly similar methods can be em
ployed to find the fractal dimension ofk-bones~and therefore
k-blocks! with k>3 to high precision.

VIII. RELATIONSHIP TO RENORMALIZATION GROUP

The process of replacing a two-terminal objectt by a
single virtual bond and then replacing two-terminal obje
within t by single virtual bonds and so on is reminiscent
the decimation process in renormalization group~RG! ap-
proaches to percolation@2,3,15,16#. It is here, however, tha
the similarity ends. The decimation process performed in
decomposition into 3-blocks is an exact decimation p
formed on objects in individual realizations while the R
decimation is performed on the lattice and is an approxim
tion, except for hierarchical lattices. Also, the purpose of
decomposition into 3-blocks is to improve computation
performance and analyze the properties of substructure
the cluster while the purpose of RG calculations is to fi
properties of percolation analytically. Finally, whereas R
approaches on hierarchical lattices result in objects that
finitely ramified, the decomposition into 3-blocks we pe
form maintains the infinite ramification of the Euclidean la
tice.

IX. COMPUTATIONAL IMPLICATIONS

The fact that the fractal dimension of 3-blocks is sign
cantly smaller than the fractal dimension of 2-blocks h
important computational implications. We can efficiently c
culate properties~e.g., resistance, velocity distributions, se
avoiding walk statistics! of a percolation cluster or backbon
as follows: ~i! decompose the cluster or backbone in
2-blocks;~ii ! decompose the 2-blocks into 3-blocks;~iii ! cal-
culate the desired properties of the 3-blocks;~iv! algebra-
ically determine the properties of the 2-blocks from the pro
erties of the 3-blocks; and~v! algebraically determine the
properties of the cluster or backbone from the properties
the 2-blocks.

In many cases the computation will require less C
~computer processing! resource when the complexity of th
computation is a power law or exponential of the mass of
object for which the property is being calculated. By deco
position we make the mass of these objects smaller. Red
CPU resource usage is also obtained if only a decompos
into 2-blocks is made although the saving is less. System
larger size than that could be treated before can now
treated when we decompose into 3-blocks because the fr
dimension of the 3-blocks is lower than that of the backbo
in which they are embedded; this is not true if we only d
compose into 2-blocks.

As an example of the dramatically smaller size of t
largest 3-block versus the size of the largest blob consid
3D system of sizeL51000. At criticality, the largest mas
blob in the backbone will be of the orderL1.62'63 000 while
05612
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the mass of the largest 3-block in the backbone will be
L1.2'4000. In Fig. 2 we show an actual simulation realiz
tion in which a blob of 950 bonds is decomposed into
3-block with only 216 virtual bonds, greatly reducing th
computational complexity.

X. DISCUSSION

Traditionally the decomposition of percolation system
has been to decompose the system into clusters~1-blocks!
and to decompose the clusters into blobs~2-blocks!. We ex-
tend this decomposition by decomposing 2-blocks in
3-blocks. 3-blocks are especially interesting because in c
trast to 1- and 2-blocks, the 3-blocks have the property t
they can be nested. That is, two-terminal objects, which
replaced by single virtual bonds in a 3-block, can themsel
contain other 3-blocks. Because of this replacement o
2-terminal object by a virtual bond, the fractal dimension
3-blocks is significantly smaller than the fractal dimension
2-blocks. As discussed in the preceding section, this sma
fractal dimension has important computational implicatio
for the size of percolation systems, which can be analy
and the speed at which the analysis can be performed.

In addition, within the error bars of our calculations, th
values for the 3-block fractal dimension appear to be ide
cal for 2D and 3D systems. Simulations of larger syste
and higher-dimension systems could help answer whethe
fact d3 is independent of dimension~superuniversal!. It will
also be of interest to determine the properties ofk-blocks
with k.3.
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APPENDIX A: RELATIONSHIPS AMONG EXPONENTS

Here we ask if any of the fractal dimensions and pow
law regime exponents we have identified are related. To
swer this question we must first briefly review some exist
results for relations between other exponents.

1. Previous results

It has been shown generally@17,18# that, for disjoint ob-
jects of typeX embedded in a spaceY,

dX~tX,Y21!5dnY . ~A1!

Equation~A1! holds if tX,2 or if dnY is equal to the fractal
dimension of spaceY, dY .

Special cases of Eq.~A1! have been identified previousl
for Y50, 1, and 2 corresponding to Euclidean space, per
lation cluster space, and percolation backbone space, res
tively.

~i! The first is the familiar scaling relation for the Fish
exponentt @2,3#

df~t21!5dn05d ~clusters!, ~A2!
6-8
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whered is the Euclidean dimension,df the fractal dimension
of the cluster, andt the exponent of the power-law regime
the distribution of cluster sizes.

~ii ! In Ref. @4# it was shown that

dblob-cl~tblob-cl21!5dn15df , ~cluster blobs!, ~A3!

where dblob-cl and tblob-cl are the fractal dimension and th
exponent of the power-law regime, respectively, for all blo
in the cluster.

~iii ! In Ref. @5# it was argued that

dblob-bb~tblob-bb21!5dnB5dred, ~backbone blobs!
~A4!

wheredblob-bb and tblob-bb are the fractal dimension and th
exponent of the power-law regime, respectively, for tho
blobs in the backbone anddred is the fractal dimension o
singly connected red bonds in the backbone.

Both dblob-cl and dblob-bb are equal todB , the backbone
fractal dimension. In~i! and ~ii !, Eq. ~A1! applies because
dnY5dY ; in ~iii !, Eq. ~A1! applies becausetX,2.

2. 3-blocks in blobs

In analogy with Eqs.~A2! and ~A3!, we would expect

d3~t3,2* 21!5dn2* 5d2 . ~A5!

We first confirm that the total number of 3-blocks in blo
scales with the exponentd2. If

^n~L !&;Ldn2 ~A6!

FIG. 13. ^n* (N2)&, the average number of 3-blocks in a blob
sizeN2 versusN2 for ~a! 2D and~b! 3D.
05612
s

e

and

N2;Ld2. ~A7!

Then we would expect

^n~N2!&;Ldn2 /d2. ~A8!

Figures 13~a! and 13~b! are log-log plots of̂ n(N2)&, the
average number of all 3-blocks in a blob, versus blob sizeN2
for 2D and 3D, respectively. The straight line fits with slo
1.060.05 are consistent withdn25d2. Our simulation results
in 2D from Sec. IV, d351.20 and t3,252.35 result in
d3(t3,2* 21)51.62 close to the valued251.6432. In 3D, our
simulation results from Sec. V,d351.15 andt3,252.63 re-
sult in d3(t3,2* 21)51.87 identical to the valued251.87
@13#.

3. 3-blocks in backbone

Because the number of top-level 3-blocks in the backb
is proportional to the number of 2-blocks in the backbon
the number of top level 3-blocks in the backbone sho
scale the same way the number of 2-blocks in the backbo
For all dimensions and lattices,dnB has been shown to b
@19,20#

dnB5dred5
1

n
, ~A9!

FIG. 14. ^n(L)&, the average number of top-level 3-blocks in
backbone of sizeL versusL. ~a! 2D The solid line has slope 0.75
~b! 3D The solid line has slope 1.14.
6-9
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wheren is the exponent associated with the divergence
the correlation length asp approachespc @1,2#. In 2D 1/n is
exactly 3/4 @21,22#; in 3D, 1/n has been estimated to b
1.14360.01 @23,24#. We would expect

d3~t3,B21!5dnB5
1

n
. ~A10!

Figures 14~a! and 14~b! are log-log plots of̂ n(L)&, the
,

ys

-

05612
faverage number of top-level 3-blocks in the backbone ver
system sizeL for 2D and 3D, respectively. The straight lin
fits with slope 0.7560.05 and 1.1460.05 are consistent with
the exact and previously estimated values for 1/n of 3/4 and
1.143 in 2D and 3D, respectively. Our 2D simulation resu
from Sec. IV,d351.15 andt3,251.60 result ind3(t3,B21)
50.69 close to the value 1/n53/4. For 3D, our simulation
results from Sec. V,d351.15 and t3,252.0 result in
d3(t3,B21)51.15 close to the value 1/n51.143.
74.
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