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Beyond blobs in percolation cluster structure: The distribution of 3-blocks
at the percolation threshold
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The incipient infinite cluster appearing at the bond percolation threshold can be decomposed into singly
connected “links” and multiply connected “blobs.” Here we decompose blobs into objects known in graph
theory as 3-blocks. A 3-block is a graph that cannot be separated into disconnected subgraphs by cutting the
graph at two or fewer vertices. Clusters, blobs, and 3-blocks are special cdsbboks withk=1, 2, and 3,
respectively. We study bond percolation clusters at the percolation threshold on two-dimef@»reduare
lattices and three-dimensional cubic lattices and, using Monte Carlo simulations, determine the distribution of
the sizes of the 3-blocks into which the blobs are decomposed. We find that the 3-blocks have fractal dimension
d;=1.2+0.1 in 2D and 1.150.1 in 3D. These fractal dimensions are significantly smaller than the fractal
dimensions of the blobs, making possible more efficient calculation of percolation properties. Additionally, the
closeness of the estimated values digrin 2D and 3D is consistent with the possibility thdy is dimension
independent. Generalizing the concept of the backbone, we introduce the conceft-bbae,” which is the
set of all points in a percolation system connected disjoint terminal pointsor sets of disjoint terminal
points by k disjoint paths. We argue that the fractal dimension &flmne is equal to the fractal dimension of
k-blocks, allowing us to discuss the relation between the fractal dimensioblotks and recent work on path
crossing probabilities.
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[. INTRODUCTION are graphs that cannot be decomposed by cutting the graphs
at fewer than three vertices. From a physicist’s point of view,

Percolation is the classic model for disordered systemene can understand what 3-blocks are by considering a blob

[1-3]. For concreteness we will study bond percolation sys-as a resistor network with each bond being a resistor. Assume
tems in which bonds on a lattice are randomly occupied wittPne is trying to determine the resistance between two verti-
probability p. Clusters are defined as groups of sites ancf€s of the network. One can simplify the network by using
bonds which are connected by occupied bonds. Clusters cdf{rchoff's Laws to replace groups of sequential bonds and
be decomposed into objects known as blobs. Blobs are se@oups of parallel bonds by single virtual bonds having re-

of sites and bonds which cannot be decomposed into discosistance equivalent to the bonds replaced. After this has been
nected sets by cutting only one bond. Equivalently blobs arélOn€ as completely as possible, what are left are 3-blocks.
sometimes described as being multiply connected—there al e define the mass of a 3-block as the nl_meer of virtual
at least two disjoint paths between each point in a blob angonds plus the number of nonreplaced original bonds re-

every other point in the blob. The decomposition of the en-,amning in the 3-block. Figures 1 and 2 provide examples of

. A . . the decomposition of a blob into 3-blocks. It has been shown
tire percolation cluster into blobs has been extensively stu 6] that the decomposition of 2-blocks into 3-blocks is
ied [4], as has been the distribution of sizes of blobs in th

nique.
backbong{S]. For both cluster and backbone blobs, the frac-  petermining the scaling of the distribution of the 3-blocks

tal dimension of the blobs is the fractal dimension of thej,iq which the 2-blocks can be decomposed is the subject of
backbone. _ _ this paper. In graph theory, the sites are typically not con-

Here we address the questions (of whether there are  strained to a lattice structure, and one is only concerned with
more fundamental objects into which blobs can be decomthe topo|ogy of the graphs; we will, however, work on square
posed, andii) whether these objects then be further decom-and cubic lattices.

posed. To answer these questions, we employ the language of
graph theory, in which sites are the vertices and bonds are the

II. NOTATION
edges of a grapf6].
One can defin&-connected graph®r k-blocks as graphs Since we deal with a number of different types of fractal
that cannot be separated into disconnected subgraphs by cabjects, we employ the following notation.
ting the graph at fewer thak vertices[6,7]. Thus, clusters (i) The fractal dimension of an object of typewill be

are 1-blocks and blobs are 2-blocks. The natural next level oflenoted asly .
decomposition of percolation systems is to decompose blobs (i) The number distribution of objects of typéin space
(2-blocks into 3-blocks. By the definition above, 3-blocks of type Y of sizeL will be denoted a:(Ny,Ly).
(iii) The exponent of the power-law regime of a distribu-
tion of objects of typeX in space of typér will be denoted as
*Electronic address: gerryp@bu.edu XY -
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Qb FIG. 2. Example of decomposition of backbone into 3-blocks.
Gy The thin lines represent the bonds in the backbone between points
{0,183 and{31,13 on a lattice withL=32. The backbone is com-
FIG. 1. () Decomposition of 2-blocks into subgraph§,, G,, posed of a few single bond blobs connected to the terminal points

and G;. The rightmost graph represer@with the subgraphs re- and a single large blob containing 950 bonds. The thick lines rep-
placed by equivalent “virtual edges.(b) SubgraphG, of G is resent the virtual bonds of a single top-level 3-block into which the
decomposed by identifying subgra@; . The rightmost graph rep- blob has been decomposed. This 3-block contains 216 virtual
resentsG, with the subgraptG,, replaced by its equivalent edge. bonds. Some of the groups of bonds replaced by virtual bonds can
(c) SubgraphG; of G is decomposed by identifying subgra@h; . themselves be decomposed into lower-level 3-blocks and so on.
The rightmost graph represers with the subgrapl@;; replaced

by its equivalent edge. Itg), (b), and(c) virtual edges are denoted for the number distribution of blobs of mas in the per-

by dashed lines. Note that while not shown in this figure, subgraptecolation cluster backbone anfd]

G3; could be further decomposed. The 3-blocks contained in the

graphG areG,4, having five edges, an@; (with the subgrapl®;; _ N

replaced by its equivalent edgeaving ei3ght edges. ’ N(Np,L1)=Ap L 9N, Tz,lsz(L_de) (4)

(iv) The amplitude of a distribution of objects of typan
space of typeY will be denoted ag\y v .
(v) We defined,,y through the relation

for the number distribution of blobs of mab in the whole
percolation cluster. The finite-size scaling functigr(x) in
Egs.(3) and(4) approaches 0 whex>1 and is 1 otherwise.
(R(L))~ L% 1) _ In. analogy with Eqs(3) and (4) we expect the number
' distribution of 3-blocks at all levels of nesting in a blob to be
where(n(L)) is the average number of disjoint objects of a N N
given type in spacy. * _pk g AT TR |3 N3
(vi) The denote spaces of typeor Y, we use 0,1,3 . . . " (Ns,L2) = Az 2N, fc( c )fL3( Lda)’ ®)
to denotek-blocks withk=0,1,23 . .. corresponding to Eu-
clidean space, clusters, blobs, and 3-blocks, respectively. Weherec is the mass of the smallest 3-block and the finite-size
useB to denote the percolation cluster backbone. scaling functionf (x) approaches 0 wher<1l and is 1
(vii) Additionally, because, as noted above, objects suclotherwise, reflecting the fact that there cannot be any
as 3-blocks can be nested, we denote quantities that relate 3ablocks smaller than the smallest sizeln all dimensions
all levels of nesting with an asterisk. Specificaltf;, and  and for all latticesg=5. For simplicity we will approximate
% v denote the exponent of the power-law regime and thé” (Ns,Lg) as
amplitude of a distribution of nested objects of tyyet all . .
levels of nesting in space of typé Similarly, d*, is defined A% L%eN, 2, c= Ny<al®

through the relation n*(N?"LZ):[ 0 ©

otherwise.

(n* (L))~ L%y, )
I1l. SIMULATIONS

* H .
where(n* (L)) is the average number of nested objects at all We perform simulations witp=0.5, the exact percola-

'e"el'.f'. ‘fjf nesting of a given ype '”tSpa“'e ?.;‘.a“““tes N0t tion threshold for 2D[2,3] and p=0.2488126, the most
Illi/ill Ioer \lljvzlalntifilgsatsr,lgtnsanvxgt bznr?eitggan lnes at a sing eprecise current estimate for the percolation threshold for 3D
Usingqthis notation, previous results z{ﬁi [8]. We created percolation clusters, which included the sites
' (0,L/2) and (,L/2) for the 2D simulations and the sites
N (0,L/2,L/2) and (,L/2,L/2) for the 3D simulations, decom-
n(N,,Lg)=A, BLdnBNZTZ,BfLZ( _2> (3)  Posed the backbones determined by these sites into blobs and
’ Ld2 then decomposed the blobs into 3-blocks. We study both dis-
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tributions of 3-blocks in blobs of given mass,, and distri-
butions of 3-blocks in backbones in systems of a given size
L. For purposes of analysis, we group together blobs with
mass 2" 1<N,=<2™
We perform the decomposition into 3-blocks along the
lines of the procedure sketched in REB]. Basically, this
procedure is as follows: We first designate the blob that we
are decomposing as the 2-block graphThe natural next
level of decomposition is to identify connected subgraphs
with two or more edges that are connectedztat only two
vertices. We denote these subgrafhsG,,Gs, ... ofGas 107 102 103 10°
two-terminal objects. These two-terminal objects can then be N
replaced inG by “virtual edges,”e;,e,,es, ... . Note that 3
this process can be continued recursively. That is, the sub-
graph G; may itself contain sub-graph&3;;,G;»,Gis, . .. F
that are connected 8, at only two vertices; we then replace r
the subgraph&;; in G; by virtual edgeseg;;. The process r
continues until the only remaining subgraphs are those that n
cannot be decomposed further by making cuts at two verti- 10 :
r
r
r

d

L sonmt sl sronel voionl ol

105 ° (b)

103

ces; these, by definition, are 3-blocks. An example of this N 4g-1

decomposition is shown in Fig. 1. Other methods of decom-
postion into 3-blocks are described in R€f8,10]. 10-3

We perform at least 3700 realizations for each system — — - :

A . . K . 10 3 10 2 10 1 100

size; for the smaller system sizes for which the simulations da/d
run more quickly we performed as many a$ t6alizations. X=N3/N2 /-2

Because, the larger the systems the larger the number of o .

3-blocks contained in the system, the statistics for the larger FIG. 3. 2D (& distributions P*(N3|Ny) of the number of

systems were acceptable despite the lower number of reaf:Plocks of massNs in a blob of sizeN, versusN; for (from

izations. We bin the results for all system sizes in order tg?Otiom to top ’\_'2:210_’212’214’ and 2° The distributions exhibit a
smooth the plots power-law regime with slope-2.35+0.05 (b) Distributions for

N,=212 213 214 215 and 26 scaled with the value 1.20 for the

fractal dimensiord; which gives the best collapse of the plots in
IV. TWO SPATIAL DIMENSIONS @).

N,%/% P*(x)

In this section we discuss our results for 3-blocks in 2D . _ _
percolation. Results in 3D are analogous and are discussed in In Fig. 3b), we show the collapsed plots in which we

the following section. scale the distributions by, /92 using the most precise pub-
lished estimate fod,, 1.6432-0.0008[11]. (A consistent
A. 3-blocks in blobs more recent estimatel,=1.6431+-0.0006, is given in Ref.
) o [12].) Visually, we find the best collapse is obtained thy
Figure 3a) plots the distribution®* (N3|N,), the prob-  _1 20+ 1.
ability that a 3-block contained in a blob of sikg contains We can also estimaté, using Eq.(A5) from the Appen-

N3 bonds, for various values of,. P(N3|N,) is the number gy
distributionn* (N3,N,) normalized to unity. Consistent with
Egs. (5) and (6), the plots exhibit power-law regimes fol-
lowed by cutoffs due to the finite size of the blobs. The d3(73,—1)=d},=d,. (10)
“bumps” in the distributions right before the cutoffs repre-
sent 3-blocks that would have been larger but are truncated . % _
due to the finite size of the blobs in which they are embed- Using .7312_2'35{0'05 andd,=1.6432+0.0008, results

. . in an estimate ofl;=1.22+0.05.
ded. We estimate the slope of the power-law reg|m§§, to
be 2.35-0.05. Since

B. 3-blocks in backbone

Figure 4a) plots the distribution®* (N5|Lg), the prob-
and ability that a 3-block contained in the backbone of a system
of size L contains N3 bonds, for various values oE.
N,~ L%, (8) P*(N;|Lg) is the number distributiom* (N3,Lg) normal-
ized to unity. Consistent with Eqg5) and (6), the plots
we expect exhibit power-law regimes followed by cutoffs due to the
finite size of the systems. We estimate the slope of the
N3~ N,d3/d2, (99  power- law regimesrj g, to be 2.25-0.05. In Fig. 4b), we

Ny~L% 7)
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FIG. 4. 2D (a) distributions P*(Ns|L) of the number of FIG. 5. 2D(a) distributionsP(N3|L) of the number of top level

3-blocks of masdN; in a backbone of sizé& versusN; for (from 3-blocks of mas$N; in a backbone of siz& versusN; for (from
bottom to top L=16, 32, 64, 128, 256, and 512. The distributions top to bottom L=8, 16, 32, 64, and 128. The distributions exhibit
exhibit a power-law regime with slope 2.25+0.05 (b) Distribu- a power-law regime with slope 1.6+ 0.1. (b) Distributions scaled
tions scaled with the value 1.15 for the fractal dimensiagnthat  with the value 1.15 for the fractal dimensiol that gives the best
gives the best collapse of the plots(&. collapse of the plots iia).

show the collapsed plots in which we scale the distributiongnore accurately thads can be determined by finding the
by L9%. Visually, we find the best collapse is obtained for best scaling collapse, we determidg more accurately by
dy=1.15+0.1. solving Eq.(11) for d3. Using our estimate for; g above we
Next we consider the distribution of “top-level” 3-blocks find d3=1.25+0.1. Combining this result with our earlier
in the backbone. Top-level 3-blocks are those not containe@stimates, we make the final estimate
within another 3-block. In Fig. ®), we plot the distributions B
P(N3|Lg), the probability that a top-level 3-block contained d3=1.20+0.1. (12
in the backbone of a system of sikecontainsN5 bonds, for
various values ofL. The plots exhibit power-law regimes
followed by cutoffs due to the finite size of the systems. The
exponent of the power-law regimesg is estimated to be
1.6+0.05. In Fig. %b), we show the collapsed plots, in
which we scale the distributions ty's. The best collapse is
obtained ford;=1.15+ 0.1, the same value as for the distri-
butions of 3-blocks of all levels. Thus the fractal dimensions
of the top-level 3-blocks is the same as the fractal dimension
of 3-blocks of all levels but the slopes of the power-law
regimes are different; this is seen also in Fig. 6. ; : . ;
We can also use EGA10) 10' 102 103 10*

1
da(msp— 1) =dng=> (12) FIG. 6. 2D distributionsP(N,|L) of top-level 3-blocks(filled
symbolg and P*(Ns|L) of all-level 3-blocks(unfilled symbols.
While the slopes of the power-law regimes of the two types of
to obtain an estimate al;. Sinced,g is known exactly in  distributions are different, the finite-size-system cutoffs are essen-
two dimensions and has been well studied in higher dimentally superimposed, consistent with the fractal dimension of the
sions and because one can usually determine the sigpe two types of distributions being equal.
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10k . . . : :
102 10" 100 10° 107" g 1(§J°
x=Ms/L% x=Ng/N,°/

FIG. 7. 2D (a) distributions P*(M3|L) of the number of FIG. 8. 3D (a) distributions P*(N3|N2) of the number of

3-blocks of masM in a backbone of sizé versusMs for from  3-Plocks of massNz in a blob of sizeN, versusN; for (from
top to bottory L= 16, 32, 64, 128, 256, and 512. M, we count bottom to top N,=2,22 and 22 The distributions exhibit a
not virtual bonds but all bonds in the 3-block. The distributions powerillaV\ineglme 3W'th slope-2.63+0.05 (b) Distributions for
exhibit a power-law regime with slope 1.8+0.1 (b) Distributions ~ N2=2",27% and 21 scaled with the value 1.15 for the fractal di-
scaled with the value 1.6 for the fractal dimensibythat gives the ~ Mensionds that gives the best collapse of the plots(@.

best collapse of the plots i@). V. THREE SPATIAL DIMENSIONS

C. Why the fractal dimension of 3-blocks is smaller than the ~ Our analysis of the results of the 3D simulations proceeds
fractal dimension of the backbone and 2-blocks in a similar manner to the analysis for 2D.

The fractal dimension of the 3-blocks is considerably
smaller than the fractal dimensiordg=1.6432t0.0008
[11], of 2-blocks (blobs. This is because virtual bonds  Figure 8a) plots the distributions®* (N3|Ny), the prob-
(which are counted as one b()n@mace many bonds in the ability that a 3-block contained in a blob of sikg contains
object which it replaces. This can be seen if we plot theNs bonds, for various values &f,. We estimate the slope of
distributionsP* (M5|Lg), the probability that a 3-block con- the power-law regimesy3 ,, to be 2.63-0.05. In Fig. &b),
tained in the backbone of a system of sizeontainsM, ~ We show the collapsed plots in which we scale the distribu-
bonds where we can count not the virtual bonds, but alfions byN,%/%2 with d,=1.87+0.03[13]. Visually, we find
bonds contained a 3-block. In Fig(af we plotP*(M|Lg)  he best collapse is obtained fdg=1.15-0.1.
for variousL. The best collapse for these pldisig. 7(b)] Estimatingds using Eq.(AS) from the Appendix,
corresponds to a fractal dimension of £.6.1 consistent X Ay % —
with the fractal dimension of 2-blocks in 2D. This can be ds(732~ 1) =dn =0, a3
understood as a reflection of the fact that in a system of sizgit, 7% ,=2.63+0.05 andd,=1.87+0.03, results in an es-
L, the mass of the largest 3-blo(1b0unt|_ng_ aII_bo_nd)scan be  timate bfd3= 1.15+ 0.05.
the same as the backbone mass. This is similar to the situa-
tion with blobs and backbones; the largest blob in a back-
bone can be as large as the whole backbone, which explains
why the fractal dimension of blobs is the same as the fractal Figure 9a) plots the distribution®* (N3|Lg), the prob-
dimension of the backbone. ability that a 3-block contained in the backbone of a system

Replacing a group of bonds by a virtual bond is analogou®f size L containsN; bonds, for various values df. We
to removing dangling ends on a cluster when determining thestimate the slope of the power-law regime$g, to be
backbone. 2.55+0.05. In Fig. 9b), we show the collapsed plots in

A. 3-blocks in blobs

B. 3-blocks in backbone
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101 100 10°
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FIG. 10. 3D(a) distributionsP(N3|L) of the number of top-

3-blocks of mass\; in a backbone of sizé versusN, for (from  level 3-blocks of mas#; in a backbone of sizé versusN; for
top to bottom L=8, 16, 32, 64, and 128. The distributions exhibit (from top to bottom L =32, 64, 128, 256, and 512. The distribu-
a power-law regime with slope 2.55+0.1. (b) Distributions scaled ~ tions exhibit a power-law regime with slope2.0+0.1. (b) Distri-
with the value 1.15 for the fractal dimensiol that gives the best butions scaled with the value 1.15 for the fractal dimensigthat
collapse of the plots iita). gives the best collapse of the plots(&.

which we scale the distributions ty's. Visually, we find the
best collapse is obtained fog=1.15+0.1.

Next we consider the distribution of the “top-level”
3-blocks in the backbone. In Fig. @), we plot the distribu-
tions P(N3|Lg), the probability that a top-level 3-block con-

The simulation results notwithstanding, it would be sur-
prising if d; were smaller in 3D than in 2D because, below
the critical dimensiord,=6, both the fractal dimensions of
clusters and blobs increase with the Euclidean dimension.
This suggests that while the actual valuesdaf may be
within the bounds we have estimated, the actual values will

tained in the backbone of a system of sizecontainsN; be consistent withl; (2D)<d5 (3D)

bonds, for various values df. The exponent of the power-
law regimesr; g is estimated to be 2:00.05. In Fig. 10b),
we show the collapsed plots, in which we scale the distribu-
tions by LY%. The best collapse is obtained fdg=1.15
+0.1, the same value as for the distributions of 3-blocks of
all levels. As in 2D, the fractal dimensions of the top level
3-blocks is the same as the fractal dimension of 3-blocks of
all levels but the slopes of the power-law regimes are differ-
ent; this is seen also in Fig. 11.

Using Eq.(A10)

1
d3(738— 1):dnB:;- (14

To obtain an estimate af; with our estimate forr;g above

107"}

—
<
w

P£N3|LB)

—
<
Sy

10' 102

FIG. 11. 3D distributiond®(N3|L) of top-level 3-blockg(filled

we find d3=1.14+0.1. Combining this result with our ear- symbol$ and P*(Ns|L) of all-level 3-blocks(unfilled symbols.

lier estimates, we make the final estimate While the slopes of the power-law regimes of the two types of
distributions are different, the finite-size-system cutoffs are essen-

tially superimposed consistent, with the fractal dimension of the
d;=1.15+0.1. (15  two types of distributions being equal.
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TABLE |. Measured fractal dimension, measured power-law re-
gime exponent, and calculated fractal dimension for 3-blocks in 2D

and 3D. The calculated value df; is determined by Eq(10) for
3-blocks in a blob and Eq11) for 3-blocks in the backbone.
d3 T d3
Measured Measured Calculated
2D
All 3-blocks in blob 1.2:0.1 2.35-0.05 1.22£0.05
All 3-blocks in backbone 1.150.1 2.25-0.05 —
Top-level 3-blocks in backbone 1.£%.1 1.6G:0.05 1.25-0.1
3D
105! All 3-blocks in blob 1.15-0.1 2.63:0.05 1.15-0.05
g : All 3-blocks in backbone 1.150.1 2.55:0.05 —
X 10%¢ Top-level 3-blocks in backbone 1.4%.1 2.0-0.05 1.14-0.1
x r
o 10"}
S 10~ : have the same fractal dimensionslablocks. We define a
-~ E k-bone as the set of all points in a percolation system con-
1073} B nected tok disjoint terminal pointgor sets of disjoint termi-
P ) ) , , nal pointg by k disjoint paths. Thus the backbone i&-aone
1073 102 10°' 10° 10’ with k= 2. Just as the largektblocks into which a backbone
X:M3/Ld3 can be decomposed are 2-blocks, the largestocks into

which ak-bone can be decomposed #&rblocks. The fractal
FIG. 12. 3D (a) distributions P*(Ms|L) of the number of dimension of k-bones is the fractal dimension of the

3-blocks of mas#v; in a backbone of sizeé versusMs for (from  K-blocks. One can see this easily by noting that if the
top to bottom L=8, 16, 32, 64, and 128. IM we count not K-terminal points that define lebone are connected to each

virtual bonds but all bonds in the 3-block. The distributions exhibit Other, the resulting structure ksblock.

a power-law regime with slope 1.87+0.1. (b) Distributions scaled Recent work[14] has identified a relationship between
with the value 1.85 for the fractal dimensiol that gives the best path crossing probabilities and the fractal dimensions of per-
collapse of the plots irta). colation structures. Specifically, consider the probabift,

that in an annular region the small inner circle of radius
connected to the larger outer circle of radRsR>r, by k
disjoint paths. Then

As in 2D, if we do not replace two-terminal objects in a
3-block by a single virtual bond, the fractal dimension of the
3-block is that of a blolisee Fig. 12

Estimates for all of the 2D and 3D exponents are summa-
rized in Table |. PR~

F\ X
—) . a7

VI. DECOMPOSITION OF THE WHOLE PERCOLATION

CLUSTER It has been observed 4] that x, is the codimension of the

percolation cluster and, is the codimension of the back-

While we have only decomposed 2-blocks that comprisehone. We extend these observations to the case of general
the cluster backbone, we could proceed similarly for all
2-blocks into which a cluster is decomposed. The fractal di- d—x,=d,, (18
mension of the 3-blocks into which a cluster is ultimately
decomposed should be the same as the fractal dimension whered is the spatial dimension of the system. This should
the 3-blocks into which the backbone is ultimately decom-hold in all dimensions where the annulus is now defined by
posed. The only difference we would expect in our resultgwo hyperspheres. It has been arg(i22] that
would be that the slope of the power-law regime of the dis- .
tribution of the top-level 3-blocks would be given by X <X <Xk s (19

d3(73,—1)=dpy;=d, (16)  wherexy is the polychromatic path crossing expongbé]
and which has been found rigorously in 2D to 4]
the analogy of Eq(A10)
X =15 (k*—1). (20)
VII. k-BONES AND PATH CROSSING PROBABILITIES . ) .
Using Eqgs.(18)—(20), we find in 2D
Just as blobs and backbones have the same fractal dimen-
sion, we can identify objects analagous to backbones which —13<d3<3, (21)
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consistent with our estimate fal; in 2D. the mass of the largest 3-block in the backbone will be of
The relationship between the path crossing problem fot-*?~4000. In Fig. 2 we show an actual simulation realiza-

k=2 and the backbone dimension has been recently exion in which a blob of 950 bonds is decomposed into a

ploited to determinalg very accurately using a transfer ma- 3-block with only 216 virtual bonds, greatly reducing the

trix technique[12]. Possibly similar methods can be em- computational complexity.

ployed to find the fractal dimension &fbones(and therefore

k-blocks with k=3 to high precision. X. DISCUSSION

Traditionally the decomposition of percolation systems
VIIl. RELATIONSHIP TO RENORMALIZATION GROUP has been to decompose the system into ClUS{MOCkS
and to decompose the clusters into blgpshlocks. We ex-

The process of replacing a two-terminal objécby a . o X .
single virtual bond and then replacing two-terminal objectstenOI this decomposition by decomposing 2-blocks into

e : : . - 3-blocks. 3-blocks are especially interesting because in con-
within t by single virtual bonds and so on is reminiscent of
the decimation process in renormalization graiG) ap- :LaSt to 1-band Zgb(ljoc_:fﬁ’ tthe ?—blotcks ha\lle g_]e {)rop(;r.tyhthat
proaches to percolatior2,3,15,18. It is here, however, that ey can be nested. 1hat Is, two-terminal objects, which are

the similarity ends. The decimation process performed in théeplaced by single virtual bonds in a 3-block, can themselves

decomposition into 3-blocks is an exact decimation per_contain other 3-blocks. Because of this replacement of a

formed on objects in individual realizations while the RG 2-termina}l ok.)jegt_ by a virtual bond, the fractal di.mensilon of
decimation is performed on the lattice and is an approxima?"blcmks is significantly smaller than the fractal dimension of
tion, except for hierarchical lattices. Also, the purpose of th 'b|°CkS.' As d!scussed. in the preceding section, th's. S”.‘a”er
decomposition into 3-blocks is to improve computational ractal dimension has important computational implications

performance and analyze the properties of substructures J)?r the size of percolation systems, which can be analyzed

the cluster while the purpose of RG calculations is to findand the speed at which the analysis can be performed.

properties of percolation analytically. Finally, whereas RG In addition, within the error bars of our calculations, the

approaches on hierarchical lattices result in objects that ar\éa:ufes fzo[r)the d3—:§)é)ock f;actal ds'mer}s't.on app:(elar to be |dtent|—
finitely ramified, the decomposition into 3-blocks we per- cal for an Systems. simuiations of farger systems

form maintains the infinite ramification of the Euclidean lat- and hlg_he_r-dlmen5|on systgms C.OUId help answer Wh_ether in
tice. fact d; is independent of dimensioguperuniversal It will

also be of interest to determine the propertieskdflocks
with k> 3.
IX. COMPUTATIONAL IMPLICATIONS

The fact that the fractal dimension of 3-blocks is signifi- ACKNOWLEDGMENTS

cantly smaller than the fractal dimension of 2-blocks has \\e thank D. Baker, L. Braunstein, S. Havlin, A. Moreira,

important computational implications. We can efficiently cal-v. schulte-Frohlinde, and D. Stauffer for stimulating discus-
culate propertiege.g., resistance, velocity distributions, self- sions and helpful comments.

avoiding walk statisticsof a percolation cluster or backbone
as follows: (i) decompose the cluster or backbone into AppENDIX A: RELATIONSHIPS AMONG EXPONENTS
2-blocks;(ii) decompose the 2-blocks into 3-blocki;) cal-
culate the desired properties of the 3-blocks;) algebra- Here we ask if any of the fractal dimensions and power-
ically determine the properties of the 2-blocks from the proplaw regime exponents we have identified are related. To an-
erties of the 3-blocks; andv) algebraically determine the swer this question we must first briefly review some existing
properties of the cluster or backbone from the properties ofesults for relations between other exponents.
the 2-blocks.

In many cases the computation will require less CPU 1. Previous results
(computer pr_ocessnjgesource when the_ complexity of the It has been shown generall§7,18 that, for disjoint ob-
computation is a power law or exponential of the mass of theects of typeX embedded in a space
object for which the property is being calculated. By decom yp P
position we make the mass of these objects smaller. Reduced dy(7x y—1)=d,y. (A1)
CPU resource usage is also obtained if only a decomposition '
into 2-blocks is made although the saving is less. Systems d&quation(A1) holds if 7«<2 or if d,y is equal to the fractal
larger size than that could be treated before can now bgimension of spac¥, dy .
treated when we decompose into 3-blocks because the fractal Special cases of E4A1) have been identified previously
dimension of the 3-blocks is lower than that of the backbongor Y=0, 1, and 2 corresponding to Euclidean space, perco-
in which they are embedded; this is not true if we only de-|ation cluster space, and percolation backbone space, respec-
compose into 2-blocks. tively.

As an example of the dramatically smaller size of the (i) The first is the familiar scaling relation for the Fisher
largest 3-block versus the size of the largest blob consider axponentr [2,3]
3D system of sizd. =1000. At criticality, the largest mass
blob in the backbone will be of the ordet%%~ 63 000 while di(7—1)=d,o=d (clusters, (A2)
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FIG. 13.(n*(N,)), the average number of 3-blocks in a blob of

FIG. 14.(n(L)), the average number of top-level 3-blocks in a
size N, versusN, for (a) 2D and(b) 3D.

backbone of sizé versusL. (a) 2D The solid line has slope 0.75.

) ) ) ) ) ) (b) 3D The solid line has slope 1.14.
whered is the Euclidean dimensiod; the fractal dimension

of the cluster, and the exponent of the power-law regime in 5nq
the distribution of cluster sizes.

(i) In Ref.[4] it was shown that Ny~ L%, (A7)

biob-cf Thiob-o— 1) =dny=ds,  (cluster blobg, (A3)
Then we would expect

where dyop.c @nd m0p.c @re the fractal dimension and the
exponent of the power-law regime, respectively, for all blobs (n(Ny))~ [ dn2/d2, (A8)
in the cluster.

(iif) In Ref. [5] it was argued that Figures 18a) and 13b) are log-log plots of(n(N,)), the

AN average number of all 3-blocks in a blob, versus blob kize
Goiob-otf Thiop-bo~ 1) =0ne=rea, ~ (baCkbONE blo@?A4) for 2D and 3D, respectively. The straight line fits with silﬂope
1.0+ 0.05 are consistent witth,,= d,. Our simulation results
where dyop.pp @and Tp0n.pp @re the fractal dimension and the in 2D from Sec. IV, d3=1.20 and 73,=2.35 result in
exponent of the power-law regime, respectively, for thosed;(73,—1)=1.62 close to the valud,=1.6432. In 3D, our
blobs in the backbone andiq is the fractal dimension of simulation results from Sec. \3;=1.15 andr; ,=2.63 re-

singly connected red bonds in the backbone. sult in d(73,—1)=1.87 identical to the valuel,=1.87
Both dyop-c @nd dyop-pp are equal todg, the backbone [13].

fractal dimension. In(i) and (ii), Eq. (A1) applies because
d,y=dy; in (iii), Eq. (Al) applies becausey<2. 3. 3-blocks in backbone
2. 3-plocks in blobs Because the number of top-level 3-blocks in the backbone
, is proportional to the number of 2-blocks in the backbone,
In analogy with Eqs(A2) and (A3), we would expect the number of top level 3-blocks in the backbone should
da(7,—1)=d*,=d (A5) scale the same way the number of 2-blocks in the backbone.
81732 n2m F2 For all dimensions and latticesl,,z has been shown to be
We first confirm that the total number of 3-blocks in blobs [19,20
scales with the exponent,. If

1
(n(L))~ L2 (A6) dng=drea=", (A9)
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where v is the exponent associated with the divergence ofiverage number of top-level 3-blocks in the backbone versus
the correlation length as approache. [1,2]. In 2D 1/vis  system size for 2D and 3D, respectively. The straight line
exactly 3/4[21,22; in 3D, 1/ has been estimated to be fits with slope 0.750.05 and 1.14 0.05 are consistent with
1.143+0.01[23,24. We would expect the exact and previously estimated values for df 3/4 and
1.143 in 2D and 3D, respectively. Our 2D simulation results
1 from Sec. IV,d3=1.15 andr; ,=1.60 result ind3(735—1)
d3(7ap— 1):dnB:;- (A10) =069 close to the value &£ 3/4. For 3D, our simulation
results from Sec. V,d3=1.15 and 73,=2.0 result in
Figures 14a) and 14b) are log-log plots ofn(L)), the  d3(73g—1)=1.15 close to the value i+ 1.143.
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